1. Are O, N, and P collinear? If so, name the line on which they lie.

![Diagram showing points O, N, and P]

a. No, the three points are not collinear.
b. Yes, they lie on the line MP.
c. Yes, they lie on the line NP.
d. Yes, they lie on the line MO.

2. Name the plane represented by the front of the box.

![Diagram of a box]

a. FBC
b. BAD
c. FEC
d. FKG

3. What is the intersection of plane $TUYX$ and plane $VUYZ$?

![Diagram of a cube]

a. UY
b. SW
c. TX
d. VZ

4. Name the ray in the figure.

![Diagram of a ray]

a. BA
b. AB
c. BA
d. AB
5. Find AC.

 a. 14 b. 15 c. 12 d. 4

6. If T is the midpoint of SU, find the values of x and ST. The diagram is not to scale.

 \[x = 5, \ ST = 45 \]
 \[x = 5, \ ST = 60 \]
 \[x = 10, \ ST = 60 \]
 \[x = 10, \ ST = 45 \]

7. Which point is the midpoint of AE?

 a. D b. B c. not $B, C, or D$ d. C

8. If $m\angle EOF = 26$ and $m\angle FOG = 38$, then what is the measure of $\angle EOG$? The diagram is not to scale.

 a. 64 b. 12 c. 52 d. 76

9. The complement of an angle is 25°. What is the measure of the angle?

 a. 75° b. 155° c. 65° d. 165°

10. $\angle 1$ and $\angle 2$ are supplementary angles. $m\angle 1 = x - 39$, and $m\angle 2 = x + 61$. Find the measure of each angle.

 a. $\angle 1 = 79, \ \angle 2 = 101$
 b. $\angle 1 = 40, \ \angle 2 = 140$
 c. $\angle 1 = 40, \ \angle 2 = 150$
 d. $\angle 1 = 79, \ \angle 2 = 111$

11. Find the distance between points $P(8, 2)$ and $Q(3, 8)$ to the nearest tenth.

 a. 11 b. 7.8 c. 61 d. 14.9

12. Find the coordinates of the midpoint of the segment whose endpoints are $H(8, 2)$ and $K(6, 10)$.

 a. (7, 6) b. (1, 4) c. (14, 12) d. (2, 8)
13. Find the midpoint of PQ.

![Graph showing point P at (5, 0) and point Q at (-10, 0)]

a. $(-3, -1)$
b. $(-2, 0)$
c. $(-2, -1)$
d. $(-3, 0)$

14. Line r is parallel to line t. Find $m\angle 5$. The diagram is not to scale.

<table>
<thead>
<tr>
<th>r</th>
<th>7</th>
<th>135°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>4 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 6</td>
</tr>
</tbody>
</table>

a. 45
b. 35
c. 135
d. 145

15. How are $\angle 6$ and $\angle 2$ related?
 a. corresponding angles
 b. alternate interior angles
 c. same-side interior angles
 d. none of these

16. $m\angle 1 = 6x$ and $m\angle 3 = 120$. Find the value of x for p to be parallel to q. The diagram is not to scale.

![Graph showing line p and q with angles 3, 4, 1, and 2]
17. Find the value of k. The diagram is not to scale.

\[\begin{align*}
62^\circ & \\
\text{45}^\circ & \\
k^\circ &
\end{align*} \]

a. 17
b. 73
c. 118
d. 107

18. Classify the triangle by its sides. The diagram is not to scale.

\[\begin{align*}
9 & \\
9 & \\
9 &
\end{align*} \]

a. straight
b. scalene
c. isosceles
d. equilateral

19. Classify $\triangle ABC$ by its angles, when $m \angle A = 32$, $m \angle B = 85$, and $m \angle C = 63$.

a. right
b. straight
c. obtuse
d. acute

20. Find the value of x. The diagram is not to scale.

\[\begin{align*}
72^\circ & \\
105^\circ & \\
x^\circ &
\end{align*} \]

a. 33
b. 162
c. 147
d. 75

21. Find the value of the variable. The diagram is not to scale.

\[\begin{align*}
114^\circ & \\
x^\circ & \\
47^\circ &
\end{align*} \]

a. 66
b. 19
c. 29
d. 43

22. $\angle ABC = \ ?$

\[\begin{align*}
\angle PMN & \\
\angle NPM & \\
\angle NMP & \\
\angle MNP &
\end{align*} \]

a. $\angle PMN$
b. $\angle NPM$
c. $\angle NMP$
d. $\angle MNP$
23. The two triangles are congruent as suggested by their appearance. Find the value of c. The diagrams are not to scale.

![Two triangles with angles and sides labeled.](image)

- A. 4
- B. 5
- C. 3
- D. 38

24. Given $\triangle QRS \cong \triangle TUV$, $QS = 3v + 2$, and $TV = 7v - 6$, find the length of QS and TV.
- A. 2
- B. 9
- C. 8
- D. 20

25. Name the angle included by the sides \overline{PN} and \overline{NM}.

- A. $\angle N$
- B. $\angle P$
- C. $\angle M$
- D. None of these
26. In each pair of triangles, parts are congruent as marked. Which pair of triangles is congruent by ASA?
 a.
 b.
 c.
 d.

27. Can you use the ASA Postulate, the AAS Theorem, or both to prove the triangles congruent?
 a. either ASA or AAS
 b. ASA only
 c. AAS only
 d. neither

28. Use the information in the figure. Find $m \angle D$.
 Drawing not to scale
 a. 32°
 b. 122°
 c. 64°
 d. 58°

29. Name a median for $\triangle ABC$.
 a. \overline{AD}
 b. \overline{CE}
 c. \overline{AF}
 d. \overline{BD}
30. Name the smallest angle of $\triangle ABC$. The diagram is not to scale.

```
C
/|
/ \
A 5
|
/ \
/ 7
B 6
```

a. $\angle A$
b. $\angle C$
c. Two angles are the same size and smaller than the third.
d. $\angle B$

31. List the sides in order from shortest to longest. The diagram is not to scale.

```
J
/|
/ \
66°
/ \
/ 50°
/ \
/ 64°
L
```

a. $\overline{LK}, \overline{LJ}, \overline{JK}$
b. $\overline{LJ}, \overline{LK}, \overline{JK}$
c. $\overline{LJ}, \overline{JK}, \overline{LK}$
d. $\overline{LK}, \overline{JK}, \overline{LJ}$

32. Which three lengths can NOT be the lengths of the sides of a triangle?
 a. 23 m, 17 m, 14 m
 b. 11 m, 11 m, 12 m
 c. 5 m, 7 m, 8 m
 d. 21 m, 6 m, 10 m

33. If $\frac{a}{b} = \frac{5}{3}$, then $3a = ___$.
 a. $3b$
 b. $10b$
 c. $5b$
 d. $6b$

34. Identify the pair of angles as corresponding, alternate interior, both, or neither.

```
\angle 6, \angle 2
```

a. alternate interior
b. neither
c. corresponding
d. both
35. Is line l parallel to line m? Explain.

Not drawn to scale

a. No; alternate interior angles are not congruent.
b. Yes; alternate interior angles are congruent.
c. No; corresponding angles are not congruent.
d. Yes; corresponding angles are congruent.

36. Michele wanted to measure the height of her school’s flagpole. She placed a mirror on the ground 48 feet from the flagpole, then walked backwards until she was able to see the top of the pole in the mirror. Her eyes were 5 feet above the ground and she was 12 feet from the mirror. Using similar triangles, find the height of the flagpole to the nearest tenth of a foot.

a. 20 ft b. 38.4 ft c. 55 ft d. 25 ft

37. What is the value of e?

a. 212° b. 302° c. 58° d. 122°

38. What is the measure, in degrees, of $\angle ABC$?

a. 65° b. 25° c. 77.5° d. 90°
39. Triangle ABC, shown in the diagram below, is an isosceles triangle.

![Diagram of triangle ABC with angle ACD = 130°](image)

If the measure of $\angle ACD$ is 130°, what is the measure of $\angle ABC$?

a. 50°
b. 65°
c. 130°
d. 220°

40. What is the measure of $\angle ABC$?

![Diagram of triangle ABC with angles 41° and 50°](image)

a. 94°
b. 79°
c. 269°
d. $89^\circ
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>B</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
</tr>
<tr>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td>26</td>
<td>B</td>
</tr>
<tr>
<td>27</td>
<td>A</td>
</tr>
<tr>
<td>28</td>
<td>A</td>
</tr>
<tr>
<td>29</td>
<td>D</td>
</tr>
<tr>
<td>30</td>
<td>D</td>
</tr>
<tr>
<td>31</td>
<td>C</td>
</tr>
<tr>
<td>32</td>
<td>D</td>
</tr>
<tr>
<td>33</td>
<td>C</td>
</tr>
<tr>
<td>34</td>
<td>C</td>
</tr>
<tr>
<td>35</td>
<td>C</td>
</tr>
<tr>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>37</td>
<td>C</td>
</tr>
<tr>
<td>38</td>
<td>B</td>
</tr>
<tr>
<td>39</td>
<td>A</td>
</tr>
<tr>
<td>40</td>
<td>D</td>
</tr>
</tbody>
</table>